New insights into the control of endoreduplication: endoreduplication could be driven by organ growth in Arabidopsis leaves.

نویسندگان

  • Catherine Massonnet
  • Sébastien Tisné
  • Amandine Radziejwoski
  • Denis Vile
  • Lieven De Veylder
  • Myriam Dauzat
  • Christine Granier
چکیده

Enormous progress has been achieved understanding the molecular mechanisms regulating endoreduplication. By contrast, how this process is coordinated with the cell cycle or cell expansion and contributes to overall growth in multicellular systems remains unclear. A holistic approach was used here to give insight into the functional links between endoreduplication, cell division, cell expansion, and whole growth in the Arabidopsis (Arabidopsis thaliana) leaf. Correlative analyses, quantitative genetics, and structural equation modeling were applied to a large data set issued from the multiscale phenotyping of 200 genotypes, including both genetically modified lines and recombinant inbred lines. All results support the conclusion that endoreduplication in leaf cells could be controlled by leaf growth itself. More generally, leaf growth could act as a "hub" that drives cell division, cell expansion, and endoreduplication in parallel. In many cases, this strategy allows compensations that stabilize leaf area even when one of the underlying cellular processes is limiting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UBIQUITIN-SPECIFIC PROTEASE14 Interacts with ULTRAVIOLET-B INSENSITIVE4 to Regulate Endoreduplication and Cell and Organ Growth in Arabidopsis.

Organ growth is determined by a coordinated combination of cell proliferation and cell growth and differentiation. Endoreduplication is often coupled with cell growth and differentiation, but the genetic and molecular mechanisms that link endoreduplication with cell and organ growth are largely unknown. Here, we describe UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by the DA3 gene, which func...

متن کامل

FZR2/CCS52A1 Expression Is a Determinant of Endoreduplication and Cell Expansion in Arabidopsis

Endoreduplication, a modified cell cycle that allows cells to increase ploidy without subsequent cell division, is a key component of plant growth and development. In this work, we show that some, but not all, of the endoreduplication of Arabidopsis (Arabidopsis thaliana) is mediated by the expression of a WD40 gene, FIZZY-RELATED2 (FZR2). Loss-of-function alleles show reduced endoreduplication...

متن کامل

High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis

N-acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still uncl...

متن کامل

Genome-wide analysis of gene expression profiles associated with cell cycle transitions in growing organs of Arabidopsis.

Organ growth results from the progression of component cells through subsequent phases of proliferation and expansion before reaching maturity. We combined kinematic analysis, flowcytometry, and microarray analysis to characterize cell cycle regulation during the growth process of leaves 1 and 2 of Arabidopsis (Arabidopsis thaliana). Kinematic analysis showed that the epidermis proliferates unt...

متن کامل

Kip-related protein 3 is required for control of endoreduplication in the shoot apical meristem and leaves of Arabidopsis.

The cell cycle plays an important role in the development and adaptation of multicellular organisms; specifically, it allows them to optimally adjust their architecture in response to environmental changes. Kip-related proteins (KRPs) are important negative regulators of cyclin-dependent kinases (CDKs), which positively control the cell cycle during plant development. The Arabidopsis genome pos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 157 4  شماره 

صفحات  -

تاریخ انتشار 2011